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ABSTRACT
Knowledge of the three-dimensional structure of proteins is
integral to understanding their functions, and a necessity in
the era of proteomics. A wide range of computational methods
is employed to estimate the secondary, tertiary, and qua-
ternary structures of proteins. Comprehensive experimental
methods, on the other hand, are limited to nuclear mag-
netic resonance (NMR) and X-ray crystallography. The full
characterization of individual structures, using either of these
techniques, is extremely time intensive. The demands of high
throughput proteomics necessitate the development of new,
faster experimental methods for providing structural informa-
tion. As a first step toward such a method, we explore the
possibility of determining the structural classes of proteins dir-
ectly from their NMR spectra, prior to resonance assignment,
using averaged chemical shifts. This is achieved by correl-
ating NMR-based information with empirical structure-based
information available in widely used electronic databases. The
results are analyzed statistically for their significance. The
robustness of the method as a structure predictor is probed
by applying it to a set of proteins of unknown structure. Our
results show that this NMR-based method can be used as a
low-resolution tool for protein structural class identification.
Contact: krish@llnl.gov

1 INTRODUCTION
The structural class of a protein lies at the top of any hier-
archical characterization of its fold. The concept of protein
structural class was first introduced by Levitt and Chothia,
based on the visual inspection of polypeptide chain topolo-
gies in a data set of 31 proteins (Levitt and Chothia, 1976).
In the last decade, the designation of class based on second-
ary structure content has been extremely useful from both
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experimental and theoretical points of view (Klein and Delisi,
1986; Klein, 1986; Zhang and Chou, 1992; Zhou et al., 1992;
Metfessel et al., 1993; Boberg et al., 1995; Chou and Zhang,
1995; Zhou, 1998; Wang and Yuan, 2000; Wang, 2001; Cai
et al., 2001; Li and Lu, 2001; Luo et al., 2002). The struc-
tural class presents an intuitive description of overall protein
fold. Knowledge of class can significantly increase the quality
of secondary structure prediction from amino acid sequence
(Chou, 1989; Deleage et al., 1987; Deleage and Roux, 1987;
Deleage and Dixon, 1989; Kneller et al., 1990; Muggleton
et al., 1992; Cohen et al., 1993), reduce the scope of con-
formational searches during energy optimization (Cohen and
Kuntz, 1987; Carlacci and Englander, 1993), and improve the
calculation of hydrophobicity coefficients (Cid et al., 1992).
In addition, such knowledge can provide information about
other functional properties of proteins, such as cellular loca-
tion (i.e. whether the molecule is an intracellular, extracellular,
or membrane protein) and the presence of disulfide bonds
(Nishikawa and Ooi, 1982, 1986a; Nishikawa et al., 1986b).

Proteins are generally placed into one of three major
classes: ‘mainly-α’ (α), ‘mainly-β’ (β) and αβ (including
‘α/β’ and ‘α + β’). α and β proteins are defined as those
composed of predominantly α-helices or β-strands, respect-
ively. The α + β class consists of proteins in which α and
β regions are largely separated, and β-strands are often anti-
parallel, while the α/β class consists of proteins in which
helices and strands are mixed, and β-strands are parallel.
These definitions are generally accepted, and widely used
in the literature (Chou and Zhang, 1995). In recent years,
several methods have been proposed to identify and pre-
dict the structural classes of globular proteins (Dietmann
and Holm, 2001; Taylor, 2002). These methods range from
simple computational estimation from primary sequence
information to full characterization from high-resolution
three-dimensional structural information. Two well known
databases providing the latter, available on the World Wide
Web, are CATH (Class-Architecture-Topology-Homologous
Superfamily, http://www.biochem.ucl.ac.uk/bsm/cath_new/)
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(Orengo et al., 1997) and SCOP (Structural Classification
of Proteins, http://scop.berkeley.edu/) (Lo Conte et al.,
2002).

Since their first observation in nuclear magnetic resonance
(NMR) spectra in 1957 (Gutowsky et al., 1957), nuclear
chemical shifts have proven to be powerful indicators of the
types of structures that biopolymers can adopt. The develop-
ment of modern NMR experiments is driven predominantly
by the goal of increasing the resolution and sensitivity with
which the chemical shift of a nucleus can be measured. In
addition to structural information, chemical shifts provide
detailed information about the nature of hydrogen exchange
dynamics, ionization and oxidation states, the ring current
influence of aromatic residues, and hydrogen bonding interac-
tions (Szilagyi, 1995). Several excellent recent review articles
describe a wide variety of experimental and computational
methods for correlating chemical shifts with protein three-
dimensional structure (Szilagyi, 1995; Ando, 2001; Wishart
and Case, 2001). However, these methods rely on the chemical
shift assignment of each resonance belonging to a particu-
lar atom in the molecule (Wüthrich, 1986), which remains
a time consuming procedure, despite efforts to automate (or
semi-automate) the process (Koradi et al., 1998; Moseley and
Montelione, 1999).

We present here an empirical approach for estimating pro-
tein structural class directly from NMR spectra, prior to the
arduous task of resonance assignment. This approach is par-
allel in spirit to other spectroscopic methods, such as circular
dichroism (CD) spectroscopy in the UV absorption range
(Johnson, 1990; Perczel et al., 1991; Sreerama and Woody,
1994) and IR Raman spectroscopy (Williams et al., 1986;
Bussian and Sander, 1989; Chi et al., 1998; Sanders et al.,
1993) that do not require full knowledge of three-dimensional
structures for the estimation of protein structural classes. We
have extensively used chemical shift information available in
the Biological Magnetic Resonance Bank [BioMagResBank
(BMRB), http://www.bmrb.wisc.edu/] and Protein Data Bank
(PDB, http://www.rcsb.org/pdb/), in combination with the
aforementioned structure-based protein classification tools,
CATH and SCOP. Averaged chemical shift (ACS) values are
calculated for a set of proteins whose chemical shift data are
available in the BMRB, and separated according to protein
structural class designations into different data sets: α, β, and
αβ (including both α/β and α + β) according to CATH, and
α, β, and αβ according to SCOP. Using rigorous statistical
methods, several of these data sets are shown to represent
independent distributions: 1Hα ACS values are observed to
differentiate protein class with high sensitivity, 1HN values
with somewhat less sensitivity, and values associated with
the heteronuclei, 13Cα and 15N, not at all. BMRB entries
with chemical shift information, but with no experimental
three-dimensional structural information (i.e. no correspond-
ing PDB entries), are used to test the ability of the method
to predict structural class. These predictions correlate well

with those obtained using only amino acid sequence informa-
tion. Our results demonstrate the feasibility of obtaining
fast, low-resolution protein structural information directly
from NMR spectra, in the absence of resonance assignments.
Such information provides valuable insight prior to the time-
intensive process of complete, high-resolution determination
of three-dimensional structure.

2 MATERIALS AND METHODS
2.1 Chemical shift information
Chemical shift values corresponding to the protein atoms
1HN, 15N,1Hα and 13Cα were obtained from BMRB star files
(Seavey et al., 1991). If information on the structure of a
protein was also present in the corresponding star file, this
information was extracted, as was information on the amino
acid sequence. Only proteins with 50 or more amino acid
residues were considered, since these are expected to con-
tain a significant amount of secondary structure. Further, only
proteins with at least 70% of their residues assigned chemical
shifts were considered, since our goal was to establish a cor-
relation between the chemical shift value averaged over the
entire molecule, and the molecule’s structural class.

The ACS of a nuclear species ‘i’ was calculated using:

ACSi ≡ (1/N)
∑

k=1,M

ωk , (1)

where i = 1HN, 15N, 1Hα or 13Cα, N is the total number
of residues in the protein sequence, M is the total number
of residues with a chemical shift value assigned for spe-
cies i, and ωk is the chemical shift of the kth resonance. We
choose to divide by N , rather than M , in order to ensure
that ACS values characterize entire molecules. Drastic under-
estimation of ACS values is circumvented by choosing only
those molecules with 70% or greater assignment; for this
choice, for the majority of proteins, M ≈ N , and no signific-
ant differences are observed in the correlation (Sibley et al.,
2003). Typically, chemical shifts correspond to a single bond-
correlated spectrum, such as a heteronuclear single quantum
correlation, HSQC (Ernst et al., 1990). BMRB chemical shifts
are referenced using the widely accepted standard procedure
recommended by Wishart et al. (1995), so no rereferencing of
the values taken from the star files was necessary. Finally,
a master list containing 378 proteins was generated. The
complete list is available from the authors, upon request.

Three-dimensional structural information Structure files
were obtained from Rutgers Center for Structural Biology
(RCSB) (PDB format, http://www.rcsb.org/pdb/) (Berman
et al., 2000). Since most BMRB star files reference several
corresponding PDB structures, it was necessary to exam-
ine each entry, and choose ‘by hand’ the most appropriate
PDB ID number. When possible, the PDB ID correspond-
ing to the ‘best’ NMR structure was chosen. Entries with no
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corresponding PDB structure were noted, and subsequently
used in the test set for the classification scheme.

Protein classification Once one PDB ID number was des-
ignated, when possible, for each BMRB accession num-
ber in the master list, the CATH (Orengo et al., 1997)
and SCOP (Lo Conte et al., 2002) secondary structure
classifications for each entry were obtained from http://
www.biochem.ucl.ac.uk/bsm/cath_new/ and http://scop.
mrc-lmb.cam.ac.uk/scop/pdb.cgi/, respectively. The CATH
and SCOP class-level designations were noted separately for
each protein for which they were available, and summarized
in both cases by the general categories, ‘Alpha Proteins’ (α),
‘Alpha/Beta Proteins’ (αβ) and ‘Beta Proteins’ (β).

Statistical analysis Upon completion of these class assign-
ments, we sought to test the degree to which, for a given
nuclear species, the distribution of ACS values in each class
can be said to differ from that in the other two. Separately for
CATH and SCOP, three data files containing ACS values were
generated for each species, one for each protein class. (Pro-
teins for which either no class had been assigned, or there was
no corresponding PDB entry, were omitted.) Next, each pair
of files was statistically compared, using the Komolgorov–
Smirnov (KS) algorithm provided by (Press, 1988). The KS
‘D’ statistic provides a straightforward criterion for determin-
ing whether two data sets are drawn from different continuous
distributions of a single independent variable. This standard
test is based upon a comparison of the cumulative distribution
functions of the two data sets. All analyses were performed
using Perl scripts and C codes on a Silicon Graphics UNIX
workstation.

3 RESULTS
Averaged chemical shifts are sensitive to protein structural
class Figures 1A and B plot the 13Cα versus 1Hα, and 15N
versus 1HN, ACS values, respectively, for the proteins in
our data set. Values corresponding to molecules deemed α-
class, according to their CATH classification (see Methods),
are represented by circles. Values corresponding to molecules
deemed β-class are represented by squares. Inspection of the
figures immediately suggests the possibility of a correlation
between designated structural class and ACS. The degree to
which each data set can be said actually to represent two dis-
tinct sets, each drawn from a different distribution, was first
probed by comparison with results from NMR analysis of
specific proteins of known structural class. Figures 1a and b
plot the simulated HSQC spectra of 13Cα and 1Hα nuclei
(13C-HSQC or COSY) for histidine kinase (PDB code 1A0B,
BMRB number 4857) (Ikegami et al., 2001) and liver fatty
acid binding protein (PDB code 1LFO, BMRB number 4098)
(Wang et al., 1998), respectively. Figure 1c and d plot the
HSQC 15N and 1HN spectra for the same proteins. Histid-
ine kinase is known to be predominantly α-helical, and liver

fatty acid binding protein predominantly β-sheet. The three-
dimensional structures of these proteins are shown in Figure 1
(above and below Figure 1A and B). Each point in Figure 1a–d
(circles for histidine kinase and squares for liver fatty acid
binding protein) represents the crosspeak between nuclei due
to the presence of one-bond J-coupling. Such NMR spec-
tra are typically among the first sets of experimental results
obtained for isotopically enriched proteins. Calculated ACS
values for the 1Hα–13Cα plots of Figures 1a and b are 4.15–
58.84 ppm and 4.73–57.55 ppm, respectively. Those for the
1HN–15N correlation of Figures 1c and d are 8.13–119.82
and 8.64–124.70 ppm, respectively. These values are indic-
ated as large, black circles (for the histidine kinase data) and
squares (for the binding protein data). These same data points
are duplicated in Figure 1A and B, where it is apparent that
they fall in the expected cluster within the appropriate larger
data set.

Several distinct features can be observed in Figure 1. Even
though the overall features of the HSQC (15N and 13C) spectra
of the helical and sheet proteins look very similar, the average
chemical shifts of the spectra are distinctly different, as illus-
trated by the vertical lines in Figure 1a–d. The 1Hα ACS values
of the proteins classified as mainly-α (circles) in Figure 1A
are shifted upfield (more shielded), while the 13Cα values are
shifted downfield (less shielded) with respect to the proteins
that are classified as mainly-β (squares). For the 1HN–15N
correlation of Figure 1B, though the 1HN ACS values show
the same trend as the 1Hα values of Figure 1A (i.e. they are
shifted upfield for the mainly α-helical proteins), the 15N ACS
values also shift upfield, in contrast to the 13Cα ACS values of
Figure 1A, relative to the mainly-β proteins. The difference
between the 1Hα ACS values of the highly helical and sheet
proteins is +0.59 ppm, and that for the 1HN ACS values is
+0.51 ppm. It is this relative shifting of the ACS values that
leads to the apparent separation of the data by class identified
by CATH.

Distribution of protein structural classes with respect to ACS
values The distinctness of the data sets according to class
was further probed by simple statistical analysis. Figures 2
and 3 show histograms of the protein distributions, separ-
ated according to SCOP and CATH classification protocols,
respectively. Figure 2 shows the ACS values of the 1Hα nuc-
leus (left panels) and 1HN nucleus (right panels), classified
using SCOP as α, αβ, and β in panels a and d, b and e, and
c and f, respectively. Figure 3 shows the distributions resulting
from the CATH classification. For the histograms in Figures 2
and 3, a bin size of width 0.05 ppm was chosen, and points
on the X-axes were chosen at the centers of the bins. Table 1
lists the total number of proteins in each protein class for both
SCOP and CATH classification, and the standard deviation
and standard deviation of the mean of the individual distribu-
tions. We make no a priori assumptions about the actual form
of the distribution functions. The mean 1Hα ACS values of
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Fig. 1. Representative examples to show that ACS is a structural parameter directly obtainable from NMR spectra. (a) and (c): simulated 13C
and 15N-HSQC spectra of an α-helical protein (Histidine kinase, PDB code 1A0B, BMRB number 4857), respectively. (b) and (d): simulated
13C and 15N-HSQC spectra of a β-sheet protein (Liver fatty acid binding protein, PDB code 1LFO, BMRB number 4098). The ACS calculated
from each spectrum is noted by a black circle (helical protein) and square (sheet protein). (A) and (B): representative examples of the ACS
values calculated from 13Cα–1Hα and 15N–1HN correlations, respectively, for a set of proteins for which chemical shift information is obtained
from BioMagResBank. The circles and squares correspond to proteins that are classified as mainly-α and mainly-β, respectively, under the
CATH classification scheme. ACS values from (a) and (b), and (c) and (d), are reproduced in (A) and (B), respectively.

the α, αβ and β classes of the SCOP-classified proteins are
3.83, 3.94 and 4.05 ppm, respectively, while the correspond-
ing CATH classification values are 3.79, 3.93 and 4.05 ppm.
The mean values for the three different classes of proteins
under both SCOP and CATH differ by at least 0.1 ppm, provid-
ing the justification for separating the ACS values into three
categories: mainly-α, αβ and mainly-β. However, such a dif-
ference is not evident for the means of the 1HN ACS values
[Figs 2 and 3 (right panels), and Table 1]. In this case, one
expects the ACS values can be reasonably separated into only
two major divisions, α and ‘αβ/β’, as the mean values of
the αβ and β classes are too close to be distinguished. Sim-
ilar analyses revealed no such distinction for the backbone
heteroatoms, 13Cα and 15N.

Kolmogorov–Smirnov (KS) tests In order to determine
whether any reliable information could be obtained from the
data presented in Figures 2 and 3, and Table 1, it was necessary
to address the important question of whether the distributions

of ACS values classified as α, β or αβ, are in fact independent
of one another. In order to explore this issue, the KS test was
performed. Table 2 lists the results of the test for all nuc-
lei, and for comparisons of all potentially distinct classes, as
designated by both CATH and SCOP. We consider two dis-
tributions to be independent for values of the ‘significance’
less than or equal to 0.05; i.e. if there is 5% or less probab-
ility of obtaining a value of the statistic D ‘by chance alone’,
the two distributions being compared are deemed signific-
antly different. Table 2 lists both values of the statistic, and
the significance of those values for all comparisons. Only the
separations by class, according to SCOP, of 1Hα ACS values
are seen to be significant for all three comparisons. For CATH-
based separations of 1Hα ACS values, the α-class is seen to
be distinct from both αβ and β, but αβ and β just miss being
distinct from each other, at the 5% significance cutoff. Both
the 13Cα and 1HN separations also appear to be useful for dis-
tinguishing α from both αβ and β, but not αβ and β from each
other, for both SCOP and CATH schemes. Table 2 reveals
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Fig. 2. ACS values versus number of proteins in the three major
structural classes defined according to the SCOP method. (a), (b)
and (c) display the 1Hα ACS values for proteins that are mainly-
α, mainly-β, and a mixture of α and β(αβ) (both α/β and α + β),
respectively. (d), (e) and (f) display the corresponding 1HN values
for mainly-α, mainly-β and αβ (both α/β and α+β), respectively.

Fig. 3. ACS values versus number of proteins in the three major
structural classes defined according to the CATH method. (a), (b),
and (c) display the 1Hα ACS values for proteins that are α, β, and
αβ (both α/β and α + β), respectively. (d), (e) and (f) display the
corresponding 1HN values for α, β and αβ (both α/β and α+β),
respectively.

the results for 15N to be unreliable for all six comparisons.
The KS test results, then, confirm quantitatively the trends
suggested by the mean values of the data sets (Table 1).

Identification of the protein class from NMR data Rigorous
statistical analysis of the data clearly suggests that only the

Table 1. Characterization of the statistical distribution of structural classes

Class Totalb Mean SDc SDMd 2 ∗ SDM

SCOPa nucleus 1Hα

α 88 3.83 0.34 0.040 0.072
αβ 122 3.94 0.52 0.047 0.093
β 61 4.05 0.30 0.038 0.076

Nucleus 1HN

α 87 7.54 0.64 0.069 0.14
αβ 122 7.68 0.99 0.089 0.18
β 60 7.70 0.41 0.053 0.11

CATHe nucleus 1Hα

α 77 3.79 0.29 0.033 0.066
αβ 83 3.93 0.32 0.035 0.070
β 49 4.05 0.30 0.043 0.086

Nucleus 1HN

α 75 7.45 0.56 0.064 0.13
αβ 83 7.62 0.48 0.053 0.11
β 49 7.69 0.43 0.061 0.12

aSCOP (Structural Classification of Proteins).
bTotal number of proteins.
cSD: standard deviation.
dSDM: standard deviation about the mean.
eCATH (Class-Architecture-Topology-Homologous Superfamily).

Table 2. Results of Kolmogorov–Smirnov test

Classes
compared

SCOPa CATHb

KS D

Statisticc
Significanced KS D

Statisticc
Significanced

1Hα

α ↔ αβ 0.24 0.0039 0.32 0.00042
α ↔ β 0.41 0.0000060 0.41 0.000042
αβ ↔ β 0.24 0.018 0.23 0.058

13Cα

α ↔ αβ 0.29 0.00030 0.29 0.0021
α ↔ β 0.41 0.0000090 0.34 0.0015
αβ ↔ β 0.18 0.15 0.21 0.11

1HN

α ↔ αβ 0.22 0.012 0.28 0.0029
α ↔ β 0.26 0.015 0.27 0.021
αβ ↔ β 0.11 0.65 0.092 0.94

15N
α ↔ αβ 0.082 0.88 0.10 0.79
α ↔ β 0.11 0.77 0.14 0.59
αβ ↔ β 0.13 0.47 0.13 0.65

aProteins classified using SCOP.
bProteins classified using CATH.
cMaximum value of absolute difference between cumulative distribution functions.
dSignificance: values less than/equal to 0.05 are considered significant (numbers in bold
print).
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1Hα ACS values are capable of distinguishing the three dif-
ferent structural classes of the proteins, as designated using
either SCOP or CATH protocols, in a statistically signific-
ant way. Following the success of the KS test for 1Hα, we
sought to define the range of 1Hα ACS values corresponding
to each class. Considering the overlap between the distribu-
tions (Figs 2 and 3, left panels, and Table 1), a conservative
approach has been considered. As the relative mean values of
the three classes of the proteins differ from each other by no
more than about 0.14 ppm for 1Hα, we have chosen to con-
sider twice the standard deviation of the mean as the width
for a particular class (and still there is overlap between the
bins; see Table 1). Though this definition is not rigorously
justified, it is reasonable as a first-order approximation of the
expected distribution of ACS values about a mean assumed
to represent a best estimate of the value characterizing a par-
ticular protein class. Our results, then, are as follows. For
protein structural classes, α, αβ and β, defined by SCOP, the
centers of the ACS values are 3.83 ± 0.072, 3.94 ± 0.093 and
4.05±0.076 ppm, respectively. The corresponding values for
the CATH-classified proteins are 3.79 ± 0.066, 3.93 ± 0.070
and 4.05 ± 0.086 ppm, respectively.

Using these criteria, we have predicted the structural classes
of a set of proteins, lacking experimental three-dimensional
structural information, from the corresponding chemical shift
information. The results for a total of 37 proteins, predicted
using both CATH- and SCOP-derived empirical relations, are
summarized in Table 3. Of the 14 proteins that are predicted
to be in the mainly-α class based on either the CATH- or
SCOP-derived correlations, one falls in the overlapping region
between the α and αβ classes, according to the SCOP-derived
correlation. This protein (BMRB 4698) is designated ‘α/αβ’
in Table 3. A similar scenario is observed in the αβ and β

classes for CATH- and SCOP-derived predictions, where pro-
teins falling in overlapping regions are again designated α/αβ,
or αβ/β. It must be noted that predictions were not possible for
a few proteins that do not have ACS values within the conser-
vative widths defined (data not shown). Two proteins could be
classified using the CATH-, but not the SCOP-based, relation.
These are entered as ‘NP’ (No Prediction) in the SCOP column
of Table 3. Table 3 also shows that there is no cross-prediction
between α and β classes.

4 DISCUSSION
NMR spectroscopy plays a vital role in determining the struc-
tures of proteins in the solution state. In spite of advancement
in the field during the past decade, determining the com-
plete three-dimensional structure of any given protein is still a
time-consuming proposition. Though the information content
in the complete structure at atomic resolution is indisput-
able, several groups have recently begun exploring alternative
high-resolution methods that are faster than conventional

experiments (Atkinson and Saudek, 2002; Grishaev and
Llinas, 2002).

Prior to collecting several days’ worth of NMR spectra
for structure determination, other biophysical methods are
generally adopted to infer secondary structural information
for the protein of interest. In particular, CD spectroscopy is
extensively used to estimate the secondary structure content
of medium-sized proteins. In CD spectroscopy, deconvolu-
tion of the experimental molar ellipticity at 222 nm is used to
estimate secondary structure content. In the case of NMR,
chemical shifts have been used as regular indicators of a
particular secondary structure. For example, an 1Hα reson-
ance that is shifted upfield with respect to the corresponding
random coil value is considered to be α-helical, while one
shifted downfield to be β-strand. This is a widely accepted
procedure, and a large number of NMR studies have shown
that such correlation is valid (Cornilescu et al., 1999; Case,
2000). However, NMR spectral information has seldom been
used to obtain relatively low-resolution structural informa-
tion, such as secondary structure content. In some cases, the
results of CD are used to determine whether it is feasible to
obtain complete, three-dimensional structural information for
a particular protein, using NMR. This suggests the critical
importance of evaluating whether data obtained from NMR
itself can be used to estimate secondary structure content.
Lee and Cao have addressed this question extensively in their
comprehensive study (Lee and Cao, 1996), and have shown
that the correlation between NMR- and CD-based secondary
structure estimation is poor. Further, while CD spectro-
scopy is more suitable for studying relatively small proteins
and polypeptides, the characterization of larger molecules
requires NMR.

Computational methods often play a primary role in initial
predictions of protein structure; for example, in predictions of
protein structural class. These methods are typically invoked
even before a protein is expressed or extracted for any biophys-
ical characterization. Secondary structure estimations from
CD are often inconsistent with such computational predic-
tions from NMR. On the other hand, to date, estimations from
NMR have required the time-consuming process of resonance
assignment. A method such as that proposed here could essen-
tially fulfill the need for an empirical, NMR-based estimator
of protein structural class that is both accurate and efficient.

Our results show that 1Hα ACS values clearly distinguish
the three different protein classes, α, mixed αβ and β, when the
proteins are classified either by CATH or SCOP. The SCOP-
based distribution shows a better statistical quantification, as
the total number of proteins in that case is higher. Though
an intuitive difference between the various structural classes
with respect to ACS values is evident (Fig. 1), we quantify the
validity of the estimation using KS tests. The KS statistic, D,
is defined simply as the maximum value of the absolute dif-
ference between two cumulative distribution functions, and
is insensitive to the actual form of those functions. The KS
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Table 3. Prediction of structural class from NMR data for proteins of undetermined three-dimensional structure

BMRBa ACS
(1Hα)b

Protein name Structural class
(using
CATH-based
correlation)c

Structural class
(using
SCOP-based
correlation)d

4664 3.818 Lipocalin Q83 α α

4688 3.899 L18 αβ α/αβ

4698 3.846 Transforming Growth Factor β type II receptor α α/αβ

4722 3.823 Shikimate Kinase α α

4752 3.819 Gpnu1-E68 α α

4771 3.726 Tola3 α NP
4791 3.808 HCV NS3 RNA helicase α α

4792 3.778 ParD dimer α α

4829 3.841 Interleukin enhancer binding factor α α

4834 3.766 S. aureus peptide deformylase α α

4908 3.769 α′-domain of ERp57 α α

5014 3.724 MyBP-C cC5 α NP
5040 3.778 I1(I29T) monomer α α

5093 3.881 RbfADelta25 αβ α/αβ

5107 3.826 Sensor & Substrate Binding Domain from Lon (La)
Protease

α α

5316 3.781 Gag α α

4113 3.931 Vaccinia Glutaredoxin-1 αβ αβ

4132 4.015 Human ubiquitin-conjugating enzyme β αβ/β

4719 3.922 Ras binding domain of rat AF6 αβ αβ

4802 3.968 N-terminal domain of H-NS αβ/β αβ

4881 3.983 Azotobacter vinelandii C69A holoflavodoxin II αβ αβ

4901 3.991 p62 N-terminal domain αβ αβ

4940 3.933 Antennal Specific Protein 1 αβ αβ

4965 3.925 L11 αβ αβ

5030 3.937 Honeybee antennal specific Protein 2 αβ αβ

5093 3.881 RbfADelta25 αβ αβ

4302 4.010 Protein disulfide isomerase a′ domain β αβ/β

4720 4.066 Inhibitor-2 monomer β β

4870 4.094 region 4.2 of sigma70 of Escherichia coli RNA
polymerase holoenzyme

β β

4881 3.983 Azotobacter vinelandii C69A holoflavodoxin II β β

4901 3.991 p62 N-terminal domain β β

4913 4.046 cAMP-regulated phosphoprotein-19 monomer β β

4929 4.090 Tctex1 dimer β β

4956 4.013 YajQ from E. coli β αβ/β

4973 4.100 Saratin β β

4999 3.979 Nucleocapsid binding domain of the sendai virus
phosphoprotein

β β

5049 4.053 Extracellular domain of subunit 2 of the human receptor β β

aBioMagResBank (BMRB) accession number (http://www.bmrb.wisc.edu/).
bAveraged chemical shift (ACS) calculated for the 1Hα nuclei.
cStructural class estimation based on the empirical distribution obtained by CATH classification.
dStructural class estimation based on the empirical distribution obtained by SCOP classification.

test is a standard tool, and provides a straightforward, reliable
measure of the degree to which two unbinned distributions
that are functions of one independent variable differ. For a
more detailed description, see, e.g. Press, 1988.

The empirical correlation presented here provides a way
to determine directly the structural classes of proteins in the
absence of resonance assignments. It can be easily incor-
porated into any commercial or academic software package

that employs manual or automated peak picking routines to
reduce an HSQC spectrum into a single ACS value. We
have also investigated other possible parameters to represent
collectively a statistical distribution of data, such as skew-
ness, variance, and kurtosis (Press, 1988). Though these lead
to similar results, for the sake of simplicity only the aver-
age [Methods, Equation (1)] is considered. Further, ACS is
expressed in the same unit as chemical shift (ppm). Instead
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of using the absolute chemical shift values to determine the
averages, we have also explored definitions such as chemical
shift index (CSI) (Wishart and Sykes, 1994), which determ-
ines the relative change in the chemical shift with respect to
the corresponding random coil value. CSI may better distin-
guish proteins that are comprised primarily of either helices or
sheets; the αβ proteins cannot be defined, because the values
of α and β segments are opposite in sign, and tend to cancel
each other.

Determination of the structural classes of proteins with no
available experimental three-dimensional structure informa-
tion (from NMR or X-ray), using 1Hα ACS values, provides
an internal test of the reliability factor (Table 3). The
structural classes of these proteins were also estimated
using prediction algorithms that utilize only amino acid
sequences. For many of these proteins, the sequence-based
class prediction approach provided similar results for the
mainly-α class, while larger differences were observed for
mainly-β class proteins. However, considering the variab-
ility and confidence limits associated with such predictions
(http://cubic.bioc.columbia.edu/eva/ and references therein),
it is difficult to define a suitable control set for com-
parison. In some cases, using the sequence-based pre-
diction method (http://www.bork.embl-heidelberg.de/SSCP/)
(Eisenhaber et al., 1996), we have observed large variations in
the estimation of sheet and helical classes for the same amino
acid sequence (data not shown).

In general, the quality of structural predictions based on
specific algorithms is examined either by redistribution test
or jack-knife test (Chou, 1989). However, in this manuscript
we have considered neither of these methods, for the follow-
ing reasons. First, our method is not algorithm-based; our
results are strictly the outcome of an empirical correlation
between known protein structural classes and averaged chem-
ical shifts. Second, in self-consistency tests (Chou, 1989),
it is necessary to define a training set of proteins that obey
a particular criterion; for example, the resolution of three-
dimensional structure. Though it is possible to define such
criteria for protein classes, use of chemical shift information
as the test criterion must be considered premature, as there
is currently no consensus definition of the ‘accuracy’ of such
information (Wishart and Case, 2001).

Although we have shown that ACS values can be used to
identify directly the structural classes of proteins, thereby
providing a first, low-resolution structural estimate from
experiments, critical questions still remain. For example, what
is the reliability of the estimates? As the number of proteins
that we add into our correlations of ACS with protein class
increases, we expect the reliability of the method to improve.
In the empirical correlation derived between secondary struc-
ture content and ACS values, we have determined a reliability
factor of 80% when 1Hα nuclei are used (Sibley et al., 2003).
Notwithstanding the limited number of proteins in the cur-
rent study, and that we have defined the relative regions of

ACS values demarcating the structural classes in a conservat-
ive manner, we suggest the reliability of this method is also
about 80%. Though crude, this result is indirectly suppor-
ted by the results of Table 3. Another factor that may affect
the results is the definition of the protein classes themselves.
These definitions can be highly variable (Zhang and Zhang,
1998), and differences are observed even between CATH and
SCOP protocols. Though the number of such cases is small,
this discrepancy cannot be ruled out as a source of diminished
reliability.

Another remaining question is whether it is possible that cer-
tain amino acids bias the current estimates, since the method
is based on an average of the chemical shifts. The distribu-
tion of chemical shifts for each of the amino acids found in
the BMRB database suggests that no particular amino acid
dominates the ACS values. In a recent paper (Sharman et al.,
2001) rigorous statistical analyses of 1Hα chemical shifts are
used to show that there is no correlation between amino acid
type and propensity to fall within helical or sheet regions.
The exact nature of the chemical shift dependence on sec-
ondary structure for a specific amino acid residue remains to
be determined (Sharman et al., 2001; Havlin et al., 2001). In
addition, long range and context-dependent effects on pro-
tein structural class definition are still not clearly understood
(Sharman et al., 2001), and may also play important roles in
influencing chemical shifts.

As the estimation of structural class from NMR is directly
influenced by the quality of the data used, the method is most
useful in cases in which the resolution of the corresponding
HSQC spectrum is excellent. Experiments based on trans-
verse relaxation optimized spectroscopy (TROSY) (Pervushin
et al., 1997) provide an additional advantage in applicability
to large proteins. From a practical point of view, the method
would be most appropriate if a sufficient number of indi-
vidual cross-peaks is observed in an HSQC spectrum. Further,
since calculated ACS values are based on the total number of
residues in a protein, and not on the total number of cross-
peaks observed, we recommend a minimum of 70% of the
total number of peaks expected be present in a given spec-
trum for determination of a reliable ACS value. As a final
point, all amino acid residues have 1Hα resonances (glycine
has two), so these will be fully represented in any calcula-
tion of the 1Hα ACS. In contrast, proline residues lack an
amide proton resonance, and consequently are not observed
in 15N-HSQC spectra; an abundance of proline-rich proteins
in a data set could conceivably lead to an underestimate of
amide ACS values.

5 CONCLUSIONS
Progress in the structural biology of proteins comes from both
experimental and theoretical efforts. Computational methods
are capable of delivering fast structural information, ranging
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from low-resolution protein structural class definition to high-
quality information based on homology modeling. Experi-
mental methods that concentrate on obtaining high-resolution
information are hampered by inherent time cost, and lack
the capacity to provide low-resolution structural informa-
tion expediently. NMR spectroscopy is a powerful tool for
obtaining high-resolution structural and dynamical details of
molecules in the solution state. In order to explore new experi-
mental methods for the fast identification of protein structures
using NMR, we have investigated the degree to which the
ACS of a particular nuclear species in the protein backbone
can be used as a low-resolution structural parameter that cor-
relates with protein structural class. We have found that the
differences between the ACS values characterizing various
protein structural classes, though small, are in several cases
statistically significant.

ACS-based methods do not provide an alternative to con-
ventional NMR-based experiments. The former must only
be considered initial predictors of protein class or second-
ary structure content. Nevertheless, the quality of estimates
using these methods is comparable to or slightly better
than that obtained using sequence-based structure prediction
algorithms. ACS methods might provide a novel technique for
monitoring protein structural changes in real time, such as in
protein folding experiments. Such methods might also be used
to detect major structural changes that occur upon protein–
protein, protein–DNA/RNA, and other complex formations,
to provide some direct experimental structural information in
situations in which other techniques are incapable of doing
so (e.g. in studies of large and/or highly disordered pro-
teins), and to facilitate initial protein fold identification in
high throughput proteomics applications.

SUPPORTING INFORMATION
A list of all the proteins, BMRB numbers, PDB codes, and
calculated ACS values are available from the authors upon
request.
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